Appendix A: Supplementary Material

Effects of influent municipal wastewater microbial community and antibiotic resistance gene profiles on anaerobic membrane bioreactor effluent

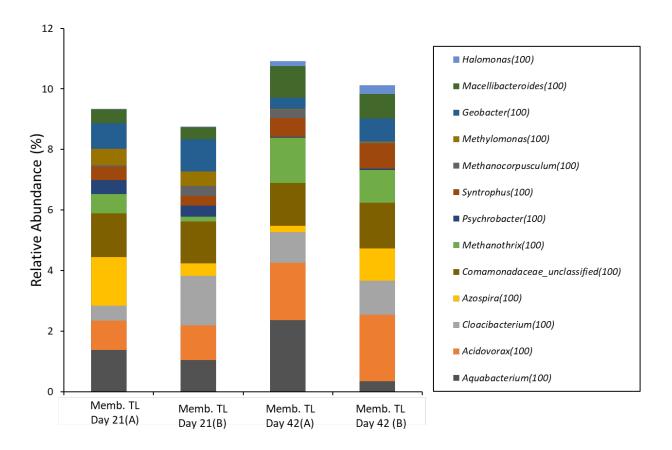
Christelle Sawaya^a, Charbel El Khoury^a, Lama Ramadan^a, Reem Deeb^a, and Moustapha Harb^a,*

^a Department of Civil and Environmental Engineering, Lebanese American University, 309

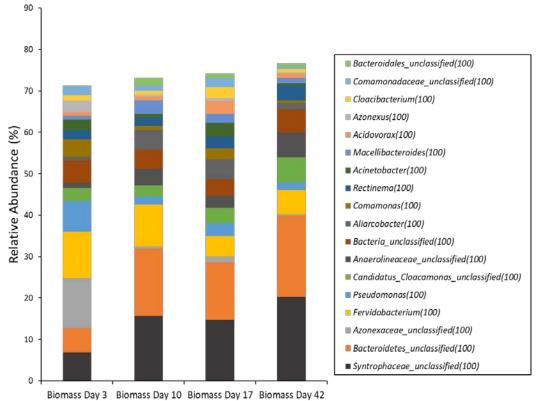
Bassil Building, Byblos, Lebanon

*Corresponding author: Moustapha Harb 305 Bassil Building, Byblos, Lebanon 2038-1401 Phone: +961-9-547254 Email: moustapha.harb@lau.edu.lb

Concentrate solution		Dilution water			
Reagent	Conc. (mg/L)	Reagent	Conc. (mg/L)		
Ammonium Chloride	12	Sodium Bicarbonate	420		
Calcium Chloride	12	Sodium Carbonate	420		
Iron Sulfate	6.08	Potassium Phosphate	24.2		
Sodium Sulfate	12				
Sodium Acetate	321				
Peptone	42.5				
Yeast	127.5				
Milk Powder	283.3				
Starch	297.5				
Copper Chloride	4.2				
Manganese Sulfate	0.83				
Lead Chloride	3.33				


Table S1 Synthetic wastewater composition used prior to treating municipal wastewater.

gPCR methods for gene quantification


For standard preparation, PCR was conducted in 20 µL reactions using 4 µL of 5x FIREPol Master Mix (Solis BioDyne, USA), 1 µL each of forward and reverse primers at 5 µM, 1 µL DNA template, and 13 µL molecular-grade water. PCR products were run on a 1.5 % agarose gel and detected on a ChemiDoc Touching Imaging System (Bio-Rad Laboratories, USA). A sterile scalpel was used to excise bands, which were then purified using the GenElute Gel Extraction Kit (Sigma-Aldrich, USA) according to the manufacturer's protocol. Concentrations of gel extracts were quantified using the AccuGreenTM High Sensitivity dsDNA Quantitation Kit (Biotium) with a Qubit 2.0 Fluorometer (Thermo Fisher, USA). Thermocycling conditions for each primer set used in standard preparation are as shown in Table S2, but with the addition of a final elongation step. For qPCR, each reaction consisted of 20 µL using 10 µL of the Biotium Forget-Me-Not qPCR Master Mix, 1 µL of 5 µM each for forward and reverse primers, 1 µL of the template, and 7 µL of molecular-grade water. Standard curves were generated during qPCR using serial dilutions of the prepared standards at 10⁻² to 10⁻⁸ of the stock concentration.

Gene	Primers (5'-3')	Preincubation	Amplification	Cycles	Amplicon (bp)	Reference
sul1	F- CGCACCGGAAACATCGCTGCAC R- TGAAGTTCCGCCGCAAGGCTCG	95°C for 5 min	95°C for 30 s, 55 °C for 30 s, 72°C for 60 s	40	163	(Pei et al., 2006)
sul2	F- TCCGGTGGAGGCCGGTATCTGG R- CGGGAATGCCATCTGCCTTGAG	95°C for 5 min	95°C for 15 s, 56 °C for 30 s, 72°C for 40s	40	191	(Pei et al., 2006)
tetC	F-GCGGGATATCGTCCATTCCG R-GCGTAGAGGATCCACAGGACG	95°C for 5 min	95°C for 30 s, 55 °C for 30 s, 72°C for 60s	40	207	(Naas et al., 2011)
tetQ	F- AGAATCTGCTGTTTGCCAGTG R- CGGAGTGTCAATGATATTGCA	95°C for 5 min	95°C for 30 s, 55 °C for 30 s, 72°C for 60 s	40	124	(Naas et al., 2011)
ampC	F- CCTCTTGCTCCACATTTGCT R- ACAACGTTTGCTGTGTGACG	95°C for 5 min	95°C for 45 s, 58 °C for 60 s, 72°C for 60s	40	189	(Szczepanowski et al., 2009)
Ыа _{тем}	F-TTCCTGTTTTTGCTCACCCAG R-CTCAAGGATCTTACCGCTGTTG	95°C for 5 min	95°C for 45 s, 58 °C for 60 s, 72°C for 60s	40	445	(Bibbal et al., 2007)
intl1	F- CTGGATTTCGATCACGGCACG R- ACATGCGTGTAAATCATCGTCG	95°C for 5 min	95°C for 30 s, 60 °C for 60 s, 72°C for 60s	40	196	(Barlow et al., 2004)
rpoB	F- AACATCGGTTTGATCAAC R- CGTTGCATGTTGGTACCCAT	94°C for 5 min	94°C for 30 s, 50 °C for 90 s, 72°C for 90s	40	381	(Dahllöf et al., 2000)

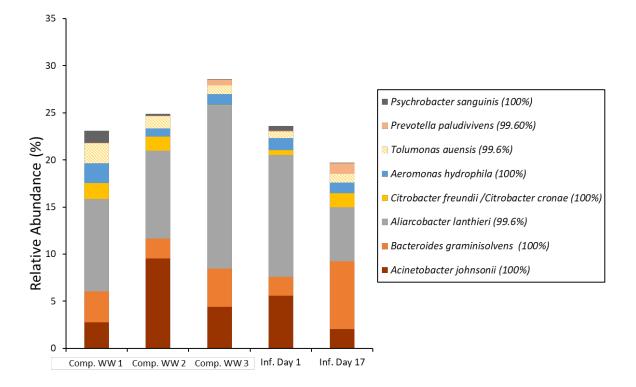

Table S2 Primer sequences, thermocycling conditions, and amplicon sizes for all genes assessed by qPCR.

Figure S1 Relative abundance (%) of microbial communities of the tightly-bound membrane biofilm layer (TL) from membranes harvested on Day 21 and Day 42 of the experiment. Groups shown represent microbial groups of relative abundance greater than 0.5% and less than 3% to illustrate methanogenic genera.

Figure S2 Relative abundance (%) of microbial communities of the AnMBR reactor biomass on Days 3, 10, 17, and 42 of the experiment.

Figure S3 2 Relative abundance (%) of microbial community operational taxonomic units (OTUs) in the influent wastewater associated with potentially pathogenic species from Day 1 and Day 17 of the experiment and three other municipal wastewater samples collected from the same seasonal timeframe.

References

Barlow, R.S., Pemberton, J.M., Desmarchelier, P.M., Gobius, K.S., 2004. Isolation and characterization of integron-containing bacteria without antibiotic selection. Antimicrobial agents and chemotherapy 48, 838-842.

Bibbal, D., Dupouy, V., Ferré, J.-P., Toutain, P.-L., Fayet, O., Prère, M.-F., Bousquet-Mélou, A., 2007. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces. Applied and Environmental Microbiology 73, 4785-4790.

Dahllöf, I., Baillie, H., Kjelleberg, S., 2000. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Applied and environmental microbiology 66, 3376-3380.

Naas, T., Ergani, A., Carrër, A., Nordmann, P., 2011. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrobial agents and chemotherapy 55, 4038-4043.

Pei, R., Kim, S.-C., Carlson, K.H., Pruden, A., 2006. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water research 40, 2427-2435.

Szczepanowski, R., Linke, B., Krahn, I., Gartemann, K.-H., Gützkow, T., Eichler, W., Pühler, A., Schlüter, A., 2009. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155, 2306-2319.