Distribution of iron in activated carbon composites:
assessment of arsenic removal behavior

SORPTION ISOTHERM

Freundlich isotherm

The Freundlich isotherm, which assumes a heterogeneous surface with a non-uniform distribution of sorption energy, is presented in Equation (S1).

\[q_e = k_f c_e^{1/n} \]

(S1)

Here, \(q_e \) (mg g\(^{-1}\)) is adsorbed mass at equilibrium concentration where \(c_e \) (mg L\(^{-1}\)) is the equilibrium concentration and \(k_f \) (mg g\(^{-1}\)(mg L\(^{-1}\))\(^{-1/n}\)) and \(1/n \) are Freundlich sorption constants. In this equation, when \(n \) is 1, the Freundlich isotherm becomes linear.

Langmuir isotherm

The basic assumptions of Langmuir isotherm (Equation (S2)) are the existence of homogeneous adsorbent surface, monolayer sorption, and a constant sorption potential.

\[q_e = \frac{q_m k_f c_e}{1 + k_f c_e} \]

(S2)

Figure S1
(a) SEM image of the composite AC-Fe(B6) and (b) EDX spectra analyzed on the surface of the same composite (with arsenic sorption). (c) Distribution of relative percentage of iron (at.%) evaluated from EDX analysis in AC-Fe composites (B1 and B6) and (d) XRD analysis of unmodified AC, AC-Fe composites containing highest (B6) and lowest iron (B1).
Here, q_m (mg g$^{-1}$) and k_t (L mg$^{-1}$) are Langmuir sorption constants. Gibbs free energy, ΔG (kJ mol$^{-1}$), released due to sorption of As ions on the adsorbent surface, was calculated based on the relation $\Delta G = -RT \ln k$. Here k the is sorption constant (k_f or k_i) (Kanel et al. 2005). We have considered Langmuir constant k_l in calculating Gibbs free energy. R (8.314 \times 10$^{-3}$ kJ mol$^{-1}$ K$^{-1}$) is the ideal gas constant and T is temperature (K).

SORPTION KINETICS

Pseudo first-order, pseudo second-order sorption kinetics models, and Webber Morris model as described using Equations (S3), (S4) and (S5) (Ho & McKay 2000; Argun et al. 2007; Vitela-Rodriguez & Rangel-Mendez 2013).

Pseudo first-order equation

$$q_t = q_e(1 - e^{-k_t t})$$

Pseudo second-order equation

$$\frac{t}{q_t} = \frac{1}{k'_t q_e^2} + \frac{t}{q_e}$$

Webber Morris model

$$q_t = k'' t + C$$

Here, q_t (mg g$^{-1}$) and q_e (mg g$^{-1}$) are the adsorbed mass at time, t (min) and at equilibrium concentration, respectively. k_t (min$^{-1}$) and k'_t (g mg$^{-1}$ min$^{-1}$) are the rate constants for the first-order and second-order sorption kinetics respectively, where, k'' (mg g$^{-1}$ min$^{-0.5}$) is the intraparticle diffusion rate constant. C is the y-axis intercept.
Table S1 | Characterization of AC-Fe composites and their arsenic removal efficiency

<table>
<thead>
<tr>
<th>Composites</th>
<th>Initial Fe concentration (molarity)</th>
<th>Final Fe content (wt.%)</th>
<th>BET (m²/g)</th>
<th>Percentage removed, As(V)</th>
<th>Percentage removed, As(III)</th>
<th>Sorption [mg As(V) /gFe]</th>
<th>Sorption [mg As(III) /gFe]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>0.00</td>
<td><0.1</td>
<td>582 ± 22.2</td>
<td>19.3</td>
<td>17.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AC-Fe(B1)</td>
<td>0.09</td>
<td>1.54</td>
<td>614 ± 14.3</td>
<td>94.5</td>
<td>42.3</td>
<td>55.4 ± 1.2</td>
<td>23.8 ± 1.1</td>
</tr>
<tr>
<td>AC-Fe(B2)</td>
<td>0.18</td>
<td>2.96</td>
<td>574 ± 20.7</td>
<td>98.7</td>
<td>61.6</td>
<td>24.5 ± 0.5</td>
<td>19.0 ± 1.2</td>
</tr>
<tr>
<td>AC-Fe(B3)</td>
<td>0.30</td>
<td>3.87</td>
<td>542 ± 17.3</td>
<td>97.0</td>
<td>59.6</td>
<td>19.7 ± 1.5</td>
<td>12.2 ± 0.9</td>
</tr>
<tr>
<td>AC-Fe(B4)</td>
<td>0.90</td>
<td>4.55</td>
<td>542 ± 20.4</td>
<td>98.2</td>
<td>45.7</td>
<td>17.1 ± 1.2</td>
<td>8.8 ± 1.9</td>
</tr>
<tr>
<td>AC-Fe(B5)</td>
<td>1.80</td>
<td>5.20</td>
<td>530 ± 26.5</td>
<td>98.1</td>
<td>55.2</td>
<td>13.5 ± 2.0</td>
<td>9.2 ± 2.1</td>
</tr>
<tr>
<td>AC-Fe(B6)</td>
<td>3.00</td>
<td>6.01</td>
<td>529 ± 14.2</td>
<td>93.7</td>
<td>56.1</td>
<td>11.5 ± 3.2</td>
<td>7.9 ± 2.3</td>
</tr>
</tbody>
</table>

REFERENCES

